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Abstract

With benefits of low storage costs and high query speeds,

hashing methods are widely researched for efficiently re-

trieving large-scale data, which commonly contains multi-

ple views, e.g. a news report with images, videos and texts.

In this paper, we study the problem of cross-view retrieval

and propose an effective Semantics-Preserving Hashing

method, termed SePH. Given semantic affinities of train-

ing data as supervised information, SePH transforms them

into a probability distribution and approximates it with to-

be-learnt hash codes in Hamming space via minimizing the

Kullback-Leibler divergence. Then kernel logistic regres-

sion with a sampling strategy is utilized to learn the non-

linear projections from features in each view to the learnt

hash codes. And for any unseen instance, predicted hash

codes and their corresponding output probabilities from ob-

served views are utilized to determine its unified hash code,

using a novel probabilistic approach. Extensive experi-

ments conducted on three benchmark datasets well demon-

strate the effectiveness and reasonableness of SePH.

1. Introduction

For numerous algorithms in the field of information re-

trieval, computer vision, etc., retrieving nearest neighbours

for an instance plays a fundamental role. However, with

the explosion of data recently, nearest neighbour retrieval

from large-scale databases becomes challenging. To tackle

that, hashing methods are proposed. By representing each

instance as a �-bit binary hash code (i.e. 0 or 1), data can be

compactly stored and Hamming distances can be fast calcu-

lated with bit-wise XOR operations. With such benefits of

low storage costs and high query speeds, hashing methods

attract much attention from both academia and industries.

Existing hashing methods can be roughly classified into

two categories: single-view hashing [16, 21, 4, 11, 6, 13,

8, 22, 10] and multi-view hashing [1, 9, 20, 24, 23, 18, 27,

14, 3, 25, 17, 26, 19], with the former focusing on data with

a single view while the latter focusing on that with multi-

ple views, e.g. a news report with images, videos and texts.

In this paper, we study the problem of cross-view retrieval

for data with multiple views. Actually, as revealed in [19],

cross-view retrieval is becoming popular, since it just needs

one view of a query and can retrieve nearest neighbours in

different views. For example, we can use a query image to

retrieve relevant videos or texts from a database. Recently,

various hashing methods for cross-view retrieval have been

proposed, including unsupervised ones [27, 14, 3, 25] and

supervised ones [1, 9, 24, 23, 18, 17, 26, 19].

In this paper, we propose a supervised Semantics-

Preserving Hashing method termed SePH for cross-view

retrieval. Given the semantic affinities of training data

as the supervised information, the proposed SePH firstly

transforms them into a probability distribution � and ap-

proximates it in Hamming space, via transforming all

pairwise Hamming distances between to-be-learnt hash

codes into another probability distribution � and minimiz-

ing its Kullback-Leibler divergence (abbreviated as KL-

divergence) from � . Unlike previous work [9, 26, 19]

that utilizes the supervised information for independently

weighting each pairwise distance/similarity between hash

codes, SePH standardizes all Hamming distances by trans-

forming each into a probability that depends on all others.

And thus correlations between Hamming distances are in-

corporated for forcing the to-be-learnt hash codes to better

preserve the semantic structure of training instances. With

learnt semantics-preserving hash codes on training data,

SePH utilizes kernel logistic regression with a sampling

strategy as basic hash functions to model the projections

from features in each view to the hash codes. And for any

unseen instance, with predicted hash codes as well as their

corresponding output probabilities from different observed

views, SePH determines its unified hash code using a novel

probabilistic approach. Note that SePH is a two-step hash-

ing framework, and the learning of hash functions for out-

of-sample extension is open for any effective method. Ex-

tensive experiments conducted on three benchmark datasets

well demonstrate that SePH is effective and reasonable.

Contributions of our work can be summarized as follows.
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∙ We propose an effective supervised cross-view hashing

method termed SePH, which transforms the semantic

affinities of training data into a probability distribu-

tion and approximates it with to-be-learnt hash codes

in Hamming space via minimizing the KL-divergence.

∙ We propose a novel probabilistic approach for deter-

mining the unified hash code of any unseen instance,

using predicted hash codes as well as the correspond-

ing output probabilities from different observed views.

The remainder of this paper is organized as follows. Sec-

tion 2 gives an overview of related work. Section 3 presents

formula details of the proposed SePH. Then detailed de-

scriptions of experiments are given in Section 4. And finally

we draw conclusions in Section 5.

2. Related Work

Recently, various hashing methods have been proposed

for cross-view retrieval, including unsupervised ones and

supervised ones.

Unsupervised hashing methods [27, 14, 3, 25] gener-

ally focus on exploiting the intra-view and inter-view re-

lations of training data with only features in different views

to learn the projections from features to hash codes. J. Song

et al. [14] proposed inter-media hashing (IMH) that intro-

duces inter-view and intra-view consistency to learn linear

hash functions for mapping features in different views into

a common Hamming space. G. Ding et al. [3] proposed

CMFH that learns unified hash codes of instances by col-

lective matrix factorization with latent factor model from

different views. J. Zhou et al. [25] proposed Latent Seman-

tic Sparse Hashing (LSSH) that learns latent semantic fea-

tures for images and texts respectively with sparse coding

and matrix factorization, and then maps them to a joint ab-

straction space for generating unified hash codes. Though

without supervised information, experiments showed that

CMFH and LSSH could well exploit the latent semantic

affinities of training data and yield state-of-the-art perfor-

mance for cross-view retrieval.

Different from unsupervised cross-view hashing meth-

ods, supervised ones [1, 9, 24, 23, 18, 17, 26, 19] are

proposed to further exploit available supervised informa-

tion like labels or semantic affinities of training data for

improving performance. M. Bronstein et al. [1] proposed

CMSSH that models the projections from features in each

view to hash codes as binary classification problems, and

learns them with boosting algorithms. S. Kumar and R.

Udupa [9] extended the single-view spectral hashing [16]

to the case of multiple views and proposed a novel method

termed CVH, which learns hash functions via minimizing

the similarity-weighted Hamming distances between hash

codes of training data. Y. Zhen and D. Yeung [23] pro-

posed co-regularized hashing (CRH) for multi-view data,

which learns hash functions for each bit of the hash codes

by solving DC (difference of convex functions) programs

and performs the learning for multiple bits via a boosting

procedure. J. Zhou et al. [26] proposed KSH-CV to learn

kernel hash functions via preserving inter-view similarities

under an Adaboost framework. D. Zhang and W. Li [19]

proposed SCM to integrate semantic labels into the hashing

learning procedure via maximizing semantic correlations,

which outperforms several state-of-the-art methods.

The proposed SePH in this paper is a supervised hash-

ing method. And different from previous work mentioned

above, when given semantic affinities of training data as

the supervised information, SePH transforms them into a

probability distribution � and approximates it in Hamming

space, via transforming all pairwise Hamming distances

between to-be-learnt hash codes into another probability

distribution � and minimizing its KL-divergence from � .

In that way, SePH standardizes all Hamming distances by

transforming each into a probability that depends on all oth-

ers, and thus incorporates the correlations between Ham-

ming distances to make the to-be-learnt hash codes better

preserve the semantic structure of training instances.

3. Proposed SePH

An illustration of the framework of the proposed SePH

is given in Fig. 1. Like [3, 25], for each instance, SePH

learns one unified hash code, instead of learning different

hash codes respectively for each observed view as other pre-

vious work [1, 9, 26, 19]. And thus SePH can further reduce

the storage costs. As illustrated in Fig. 1, given training

data with different views and its corresponding affinity ma-

trix indicating the semantic affinities between training in-

stances, SePH firstly learns the semantics-preserving hash

codes of training data via minimizing the KL-divergence of

the derived probability distribution � in Hamming space

from that in semantic space (i.e. �). Then hash functions

for each view are learnt to project features into the learnt

hash codes. And for any unseen instance, predicted hash

codes as well as the corresponding output probabilities from

learnt hash functions in all observed views are utilized to

determine its unified hash code with a novel probabilistic

approach. For ease of presentation, here we describe SePH

with only two views. But it can be easily extended to cases

with more views, as will be described later.

3.1. Problem Formulation

Assume that the training data consists of � instances,

i.e. � = {�1, �2, . . . , ��} with �� being the �th training

instance, and their corresponding two views � and � are

observed. Here we denote ��×��
and ��×��

as the view-

specific feature matrices of the training data, which are built

with feature vectors in respective views row by row. Then

��,⋅ ∈ ℝ
�� and ��,⋅ ∈ ℝ

�� , i.e. the �th rows in� and � , are
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Out-of-sample Extension: 1) Predicting hash codes from observed views, 
2) Determining the unified hash code using a novel probabilistic approach
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Unified Hash Code

Merging View-specific 
Predicted Hash Codes

View X of Training Data

View Y of Training Data

Y

Unseen Instance

Figure 1. Framework of the proposed SePH, illustrated with two-view toy data.

respectively the feature vector of the �th training instance in

� and � . The affinity matrix ��×� of training data is also

assumed to be provided, with ��,� ∈ [0, 1] indicating the

semantic affinity between �� and �� . Here � is symmetric

with ��,� = ��,�, and it provides supervised information

for learning hash codes of training instances. Generally, �

can be derived via manual scoring, or estimated from label

vectors of training data, e.g. cosine similarities.

Given the training data with its affinity matrix �, the

proposed SePH is to firstly learn semantics-preserving hash

codes on it, and then learn hash functions for out-of-sample

extension in each view, which can be seen as a two-step

hashing framework similar to [21]. Here we denote ��×��

as the hash code matrix of training data, with its �th row

��,⋅ ∈ {−1, 1}�� being the ��-bit hash code of ��. Note

that {−1, 1} is utilized here for model simplicity, and it can

be easily mapped into {0, 1}.

3.2. Semantics-Preserving Hashing

For a semantics-preserving hashing method, if �� and ��
are semantically similar, their corresponding hash codes are

supposed to be similar, and vice versa. Previous work on su-

pervised cross-view hashing like [9, 26, 19] generally takes

the provided semantic affinities to independently weight

each pairwise distance/similarity between hash codes. Dif-

ferently, SePH transforms the semantic affinities into a

probability distribution � and approximates it in Hamming

space, via transforming all pairwise Hamming distances

between to-be-learnt hash codes into another probability

distribution � and minimizing its KL-divergence from � .

In that way, SePH standardizes all Hamming distances by

transforming each into a probability depending on all oth-

ers, and thus incorporates the correlations between Ham-

ming distances to make the to-be-learnt hash codes better

preserve the semantic structure of training instances.

Specifically, to derive � , we define ��,� as the probabil-

ity of observing the semantic similarity between �� and ��
among all pairs of training instances. Furthermore, we as-

sume ��,� to be proportional to the corresponding semantic

affinity, i.e. ��,� . With all probabilities forced to sum up to

1, i.e.
∑

� ∕=� ��,� = 1, we can derive ��,� as follows.

��,� =
��,�

∑

� ∕=� ��,�

(1)

To derive �, we define the probability of observing the

similarity between �� and �� in Hamming space as ��,� . Fol-

lowing t-SNE [15], we utilize a Student t-distribution with

one degree of freedom to transform Hamming distances into

probabilities, as shown in the following formula.

��,� =
(1 + ℎ(��,⋅, ��,⋅))

−1

∑

� ∕=�(1 + ℎ(��,⋅, ��,⋅))−1
(2)

where ℎ(⋅, ⋅) denotes the Hamming distance between hash

codes. With ��,� ∈ {−1, 1} for any � and �, the Hamming

distance between hash codes of two instances can be derived

from their squared Euclidean distance as formula (3).

ℎ(��,⋅, ��,⋅) =
1

4
∥��,⋅ −��,⋅∥

2
2 (3)

And ��,� can be further rewritten as follows, which is more

tractable for optimization.

��,� =
(1 + 1

4∥��,⋅ −��,⋅∥
2
2)

−1

∑

� ∕=�(1 + 1
4∥��,⋅ −��,⋅∥22)

−1
(4)

Then the objective of SePH is to learn an optimal� that

can make � match � as well as possible, and thus preserve

the semantic structure represented by � . A natural measure

for the difference between � and � is the Kullback-Leibler

divergence, as defined in the following formula.

���(�∥�) =
∑

�∕=�

��,� log
��,�

��,�
(5)
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And thus SePH minimizes���(�∥�) to learn the optimal

hash codes of training data, i.e. � , with its objective func-

tion given as follows.

Ψ0 = min
�∈{−1,1}�×��

∑

�∕=�

��,� log
��,�

��,�
(6)

where ��,� and ��,� are respectively defined as formula (1)

and (4). However, the objective function above is NP-hard

for directly optimizing the optimal binary � . To make it

tractable, we relax � to be real-valued, which is denoted

as �̂ . And we introduce a regularizer to force the entries

of �̂ near to −1 or 1, thus making the learnt �̂ near to the

optimal binary � , as shown in the following formula.

Ψ = min
�̂∈ℝ�×��

∑

�∕=�

��,� log
��,�

��,�
+
�

�
∥∣�̂∣ − I∥22

�.�. ��,� =
(1 + 1

4∥�̂�,⋅ − �̂�,⋅∥
2
2)

−1

∑

� ∕=�(1 + 1
4∥�̂�,⋅ − �̂�,⋅∥22)

−1

(7)

where I is a matrix with all entries being 1, and ∥∣�̂∣ − I∥22
measures the quantization loss from real-valued �̂ to bi-

nary� . Here � is a model parameter for balancing the KL-

divergence and the quantization loss, and � = � × �� is a

normalizing factor to make � less dependent on the training

set size and the hash code length.

3.3. Solution and Implementation Issues

The objective function Ψ of SePH is non-convex, mean-

ing that we can only derive a local optimum. As Ψ is an

unconstrained optimization problem, to learn a locally op-

timal �̂ , here we propose to utilize gradient descent based

optimization methods. Specifically, the gradient w.r.t. �̂�,⋅,

i.e. the �th row of �̂ , can be derived as follows.

∂Ψ

∂�̂�,⋅

=
∑

� ∕=�

(��,� − ��,�)(1 +
1

4
∥�̂�,⋅ − �̂�,⋅∥

2

2)
−1(�̂�,⋅ − �̂�,⋅)

+
2�

�
(∣�̂�,⋅∣ − 1

� )⊙ �(�̂�,⋅)

(8)

where ⊙ denotes entry-wise multiplication, 1 is a ��-

dimensional column vector with all entries being 1, and

�(�̂�,⋅) is a ��-dimensional row vector consisting of the

signs of all entries in �̂�,⋅. Note that �(�̂�,⋅) is actually
∂∣�̂�,⋅∣

∂�̂�,⋅

, and for simplicity, the corresponding gradients w.r.t.

zero entries are assigned as 0.

With gradients calculated as formula (8), effective gradi-

ent descent based optimization methods can be further ap-

plied to derive an optimal �̂ . And the corresponding binary

hash code matrix� can be derived as the signs of entries in

�̂ , i.e. � = ����(�̂), with signs of zero entries set as 1.

Then for out-of-sample extension, hash functions are learnt

for each view to project features into hash codes, using �

and the corresponding feature matrix (i.e. � or � ).

3.4. Learning Hash Functions

After deriving the optimal hash code matrix� , the learn-

ing of hash functions is open for any effective predictive

models, like linear regression, SVM, logistic regression,

etc. Actually, as [1] revealed, for any bit of the hash code,

learning the corresponding hash function to project features

into it can be modelled as a binary classification problem.

In this paper, we propose to utilize kernel logistic regres-

sion to learn the projections from features to hash codes for

each view. The reason is two-fold: 1) kernel tricks is capa-

ble of modelling non-linear projections, 2) logistic regres-

sion can naturally provide probabilities with the predicted

results. As will be described later, the output probabilities

can be utilized to determine the unified hash code of an un-

seen instance. Kernel logistic regression is learnt indepen-

dently in different views. For ease of presentation, here we

only describe the learning process in view � , which can be

easily extended to other views.

Specifically, in kernel logistic regression, each feature

vector ��,⋅ is mapped to the Reproducing Kernel Hilbert

Space (RKHS) as �(��,⋅), which also forms a kernel fea-

ture matrix Φ row by row. In RKHS, the inner prod-

uct �(��,⋅)�
� (��,⋅) between kernel features �(��,⋅) and

�(��,⋅) can be efficiently calculated as �(��,⋅, ��,⋅), where

�(⋅, ⋅) is the introduced kernel function. Using non-linear

kernel functions, linear projections from kernel features to

hash codes essentially represent non-linear projections from

original features to hash codes. For the �th bit of hash code

(1 ≤ � ≤ ��), denoting the linear projection in RKHS as

w(�) and values in the bit as h(�) ∈ {−1, 1}�×1, the objec-

tive function Θ of kernel logistic regression is as follows.

Θ = min
w(�)

�
∑

�=1

log(1 + �−h
(�)
�

�(��,⋅)w
(�)

) + �∥w(�)∥22 (9)

where h
(�)
� ∈ {−1, 1} is the �th entry in h(�), and � is

a weighting parameter. Like kernel CCA [5], we require

w(�) to be in the span of the training kernel features, i.e.

w(�) = Φ�v(�) with v(�) being the spanning weights.

Then in formula (9), �(��,⋅)w
(�) = (�(��,⋅)Φ

� )v(�). It

can be seen that the training and predicting costs of kernel

logistic regression are proportional to the training set size

�, which may be unsuitable for large training sets.

Considering that training kernel features could be redun-

dant for spanning w(�), we propose to sample a fraction

of them for building a much smaller kernel feature matrix

Φ̂, and use it to span w(�), i.e. w(�) = Φ̂� v̂(�) where

v̂(�) is the to-be-learnt �-dimensional weighting vector with

�(� ≪ �) being the sampling size. Then the training and

predicting costs of kernel logistic regression will depend on

the sampling size rather than the training set size, making it

more scalable for training and more efficient for predicting.

As for sampling, one can utilize random sampling or other
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strategies like k-means.

In view � , by optimizing Θ for each bit of the hash

code, its corresponding v̂(�) can be derived, and then

{Φ̂, v̂(1), v̂(2), . . . , v̂(��)} forms the hash function set �� .

Note that here Φ̂ is shared by all v̂(�)(1 ≤ � ≤ ��), and

thus the time costs of training and predicting for all �� ker-

nel logistic regressions can be further reduced.

3.5. Generating Hash Codes

With kernel logistic regression learnt in each view, given

an unseen instance, predicted hash codes with their corre-

sponding probabilities from observed views will be output.

For example, in view � , assuming that the feature vector of

an unseen instance is x, the �th bit of its view-specific pre-

dicted hash code c� , denoted as c�� , is determined as the

sign of (�(x)Φ̂� )v̂(�). With � ∈ {−1, 1}, the correspond-

ing output probabilities can be calculated as follows.

�(c�� = �∣x) =
(

1 + �−�(�(x)Φ̂� )v̂(�)
)−1

(10)

For any unseen instance with only one view observed, it

is straightforward to determine its unified hash code as the

view-specific predicted one. As for those with both views

observed, predicted hash codes from different views need to

be merged to determine their unified hash codes, especially

when the predicted hash codes from different views are in-

consistent, as illustrated in Fig. 1. Here we propose a novel

probabilistic approach for determining each bit of the uni-

fied hash code of an unseen instance. Assume that x and y

are respectively the feature vectors of an unseen instance in

different observed views, and c� ∈ {−1, 1} is the �th bit of

its unified hash code c. Then c� is determined as follows.

c� = ����
(

�(c� = 1∣x,y)− �(c� = −1∣x,y)
)

(11)

By applying the Bayes’ theorem and assuming that different

views are conditionally independent on c�, we can further

derive that

c� = ����
(

�(x∣c� = 1)�(y∣c� = 1)�(c� = 1)

−�(x∣c� = −1)�(y∣c� = −1)�(c� = −1)
) (12)

Considering the balance between −1 and 1, �(c� = 1) and

�(c� = −1) are assumed to be equal. With further deriva-

tions applying the Bayes’ theorem, we can finally get the

following formula.

c� = ����
(

�(c� = 1∣x)�(c� = 1∣y)

−�(c� = −1∣x)�(c� = −1∣y)
) (13)

where �(c� = �∣z) = �(c�� = �∣z) with z ∈ {x,y}, � ∈
{−1, 1},� ∈ {� ,�}, and all can be calculated as formula

(10) by the corresponding learnt hash functions. Then by

determining c� for all 1 ≤ � ≤ ��, the unified hash code c

of the unseen instance will be generated.

Wiki MIRFlickr NUS-WIDE

Dataset Size 2,866 16,738 186,577

Training Set 2,173 5,000 5,000

Query Set 693 836 1,866

Nr. of Labels 10 24 10

Table 1. Statistics of three benchmark datasets.

3.6. Extensions

As mentioned previously, the proposed SePH can be eas-

ily extended to cases with more than two views. Actually,

the training processes in those cases are nearly the same,

except that hash functions for more views need to be learnt

independently. As for out-of-sample extension, with similar

derivations, formula (13) is extended as follows.

c� = ����
(

�
∏

�=1

�(c� = 1∣z�)−
�
∏

�=1

�(c� = −1∣z�)
)

(14)

where � ≥ 1 is the number of observed views, z� is the

feature vector in the �th view, and all needed probabilities

can also be calculated as formula (10).

4. Experiments

4.1. Experimental Settings

To validate the proposed SePH, we conduct experiments

on three benchmark datasets, i.e. Wiki [12], MIRFlickr [7]

and NUS-WIDE [2]. All datasets are with views of image

and text. Some statistics of them are given in Table 1.

Wiki consists of 2,866 instances collected from

Wikipedia. For each instance, the image view is represented

as a 128-D Bag-of-Visual-Words SIFT feature vector and

the text view as a 10-D topic vector. Each instance is anno-

tated with one of 10 provided labels. Here we take 25% of

the dataset as the query set and the rest as the retrieval set.

MIRFlickr originally contains 25,000 instances col-

lected from Flickr, each being an image with its associ-

ated textual tags. Each instance is manually annotated with

some of 24 provided unique labels. For pretreatment, we

only keep those textual tags appearing at least 20 times, and

then remove instances without textual tags or manually an-

notated labels. For each instance, the image view is repre-

sented with a 150-D edge histogram and the text view as a

500-D feature vector derived from PCA on its binary tag-

ging vector w.r.t. the remaining textual tags. We take 5% of

the dataset as the query set, and the rest as the retrieval set.

NUS-WIDE is a real-world web image dataset originally

containing 269,648 instances, with each being an image

with its associated textual tags. Each instance is manually

annotated with at least one of 81 provided labels. Following

[3, 25], only the top 10 most frequent labels and the corre-

sponding 186,577 annotated instances are kept. For each
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instance, the image view is represented as a 500-D Bag-

of-Visual-Words SIFT feature vector and the text view as a

binary tagging vector w.r.t. the top 1,000 most frequent tags.

Here we take 1% of the dataset as the query set and the rest

as the retrieval set.

Like [3], we take the retrieval set of Wiki as its train-

ing set due to its small size, while for the large MIRFlickr

and NUS-WIDE, to reduce computational costs, we respec-

tively sample 5,000 instances from their retrieval sets to

form the training sets. Note that for SePH, the learnt hash

codes of training instances are discarded after hash func-

tions are learnt, and it utilizes the learnt hash functions to

generate hash codes for all instances in the dataset.

In our experiments, the affinity matrix of each dataset,

i.e. � in formula (1), is derived with the cosine similari-

ties between labelling vectors of training instances w.r.t. the

provided labels. And we empirically set the only model pa-

rameter � in the objective function of SePH (i.e. formula

(7)) as 0.01 for all datasets. To learn kernel logistic regres-

sion in each view, � in formula (9) is automatically set via

cross-validation, and a RBF kernel with �2 set as the mean

squared Euclidean distance between training features is uti-

lized, with the sampling size set as 500 for all datasets. We

perform both random sampling and k-means for kernel lo-

gistic regression in SePH, which are respectively denoted as

SePH��� and SePH��.

SePH is compared with various state-of-the-art cross-

view hashing methods. Specifically, we take the supervised

CMSSH [1], CVH [9], KSH-CV [26], SCM-Orth and SCM-

Seq [19], and the unsupervised IMH [14], LSSH [25] and

CMFH [3] as baselines. It should be noticed that we uti-

lize the provided labels of training instances to calculate

the affinity matrices for IMH, and thus it is actually su-

pervised in our experiments. Source codes of most base-

lines are kindly provided by the authors, while for CVH,

we implement it as its codes are not available. Parameters

of baselines are carefully tuned and here we report their best

performance. Note that for SePH and baselines with a non-

convex objective function, we perform 10 runs for each and

take the average performance for comparison.

Performance of all cross-view hashing methods are

measured with the widely-used mean average precision

(��� ), as defined in formula (15).

��� =
1

∣�∣

∣�∣
∑

�=1

1

��

��
∑

�=1

���������(��,�) (15)

where ∣�∣ is the size of the query set �, �� is the number

of ground-truth relevant instances in the database for the

�th query, ��,� is the subset of ranked retrieval results from

the top one to the �th ground-truth relevant one, and thus

���������(��,�) is the precision calculated in��,� . Follow-

ing [3, 25], the ground-truth relevant instances for a query

are defined as those sharing at least one label with it.

4.2. Experimental Results

For SePH and all baselines, we report their cross-view

retrieval performance on all datasets in Table 2, including

the performance of retrieving text with image (i.e. “Image

Query v.s. Text Database”) and that of retrieving image with

text (i.e. “Text Query v.s. Image Database”). In both cases,

we respectively take one view of query instances for gener-

ating their hash codes.

From the experimental results, we can draw the follow-

ing observations. 1) On all benchmark datasets, the pro-

posed SePH, i.e. SePH��� and SePH��, significantly out-

performs all baselines with different hash code lengths,

which well demonstrates its effectiveness. Particularly, in

cases of “Text Query v.s. Image Database”, SePH outper-

forms the best baselines by at least 15% and at most 41%.

The superiority of SePH can be attributed to its capability

to better preserve semantic affinities in Hamming space,

as well as the effectiveness of kernel logistic regression

to model the non-linear projections from features to hash

codes for each view. 2) With the hash code length increas-

ing, generally the performance of SePH keeps increasing,

which reflects its capability of utilizing longer hash codes

to better preserve semantic affinities. Meanwhile, perfor-

mance of some baselines like CMSSH, KSH-CV and SCM-

Orth decreases, which is also observed in previous work

[26, 19, 3]. As analysed in [3], that can be due to the imbal-

ance between bits in the hash codes learnt via eigenvalue or

singular value decomposition. 3) Generally SePH�� is su-

perior to SePH���, while the superiority is minor (< 2%),

meaning that the learning of kernel logistic regression is not

sensitive to the sampling strategy. Hence for simplicity, one

can utilize random sampling for real-world applications.

To validate the superiority of SePH in preserving seman-

tic affinities, we further analyse the quality of the learnt hash

codes on training sets. Specifically, we perform cross-view

retrieval on a training set with the learnt hash codes, using

one as a query and the rest as the retrieval set every time, and

then measure the corresponding performance with ��� .

As the ground-truth relevance between instances is defined

with provided semantic labels, the ��� value can quanti-

tatively reflect how well the learnt hash codes preserve the

original semantic affinities. Fig. 2(a) and Fig. 2(b) illus-

trate the cross-view retrieval performance of SePH on the

training set of the largest NUS-WIDE with different hash

code lengths. Performance of baselines is also presented for

comparison. It can be seen that SePH significantly outper-

forms the baselines, with the corresponding ��� ≥ 0.9.

And thus the hash codes learnt by SePH are high-quality,

well preserving the semantic affinities of training instances.

Similar results are observed on other datasets.

Since the objective function of SePH (i.e. formula (7)) is

non-convex, here we further conduct experiments to analyse

the effects of initial values, as they can result in different lo-
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Wiki MIRFlickr NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image

Query

v.s.

Text

Database

CMSSH [1] 0.1877 0.1771 0.1646 0.1552 0.5728 0.5743 0.5706 0.5706 0.4063 0.3927 0.3939 0.3739

CVH [9] 0.1257 0.1212 0.1215 0.1171 0.6067 0.6177 0.6157 0.6074 0.3687 0.4182 0.4602 0.4466

IMH [14] 0.1573 0.1575 0.1568 0.1651 0.6016 0.6120 0.6070 0.5982 0.4187 0.3975 0.3778 0.3668

LSSH [25] 0.2141 0.2216 0.2218 0.2211 0.5784 0.5804 0.5797 0.5816 0.3900 0.3924 0.3962 0.3966

CMFH [3] 0.2132 0.2259 0.2362 0.2419 0.5861 0.5835 0.5844 0.5849 0.4267 0.4229 0.4207 0.4182

KSH-CV [26] 0.1965 0.1839 0.1701 0.1662 0.5793 0.5767 0.5732 0.5744 0.4229 0.4162 0.4026 0.3877

SCM-Orth [19] 0.1598 0.1460 0.1383 0.1131 0.5854 0.5751 0.5704 0.5649 0.3787 0.3668 0.3593 0.3520

SCM-Seq [19] 0.2210 0.2337 0.2442 0.2596 0.6237 0.6343 0.6448 0.6489 0.4842 0.4941 0.4947 0.4965

SePH��� 0.2762 0.2965 0.3049 0.3131 0.6720 0.6761 0.6794 0.6814 0.5394 0.5454 0.5499 0.5556

SePH�� 0.2787 0.2956 0.3064 0.3134 0.6723 0.6771 0.6783 0.6817 0.5421 0.5499 0.5537 0.5601

Text

Query

v.s.

Image

Database

CMSSH [1] 0.1630 0.1617 0.1539 0.1517 0.5715 0.5732 0.5699 0.5697 0.3874 0.3849 0.3704 0.3699

CVH [9] 0.1185 0.1034 0.1024 0.0990 0.6026 0.6041 0.6017 0.5972 0.3646 0.4024 0.4339 0.4255

IMH [14] 0.1463 0.1311 0.1290 0.1301 0.5895 0.6031 0.6010 0.5930 0.4053 0.3892 0.3758 0.3627

LSSH [25] 0.5031 0.5224 0.5293 0.5346 0.5898 0.5927 0.5932 0.5932 0.4286 0.4248 0.4248 0.4175

CMFH [3] 0.4884 0.5132 0.5269 0.5375 0.5937 0.5919 0.5931 0.5919 0.4627 0.4556 0.4518 0.4478

KSH-CV [26] 0.1710 0.1665 0.1696 0.1576 0.5786 0.5763 0.5728 0.5715 0.4088 0.3906 0.3869 0.3834

SCM-Orth [19] 0.1553 0.1389 0.1262 0.1096 0.5857 0.5747 0.5672 0.5604 0.3756 0.3641 0.3565 0.3523

SCM-Seq [19] 0.2134 0.2366 0.2479 0.2573 0.6133 0.6209 0.6295 0.6340 0.4536 0.4620 0.4630 0.4644

SePH��� 0.6312 0.6581 0.6637 0.6695 0.7178 0.7243 0.7287 0.7313 0.6230 0.6331 0.6407 0.6489

SePH�� 0.6318 0.6577 0.6646 0.6709 0.7197 0.7271 0.7309 0.7354 0.6302 0.6425 0.6506 0.6580

Table 2. Cross-view retrieval performance of the proposed SePH (i.e. SePH��� and SePH��) and compared baselines on all benchmark

datasets with different hash code lengths, in terms of ��� .
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Figure 2. Inside analyses for the training processes of SePH and baselines on the largest NUS-WIDE. Sub-figure (a) and (b) illustrate the

cross-view retrieval performance of all algorithms on the training set with different hash code lengths, which essentially reflects the quality

of the hash codes generated by each algorithm for the training set. Sub-figure (c) shows the effects of initial values on the performance of

SePH in 10 runs, with the hash code length fixed as 16 bits.

cal optimums for learning hash codes of training instances.

Specifically, we fix the hash code length as 16 bits, and per-

form 10 runs for SePH with different initial values on the

largest NUS-WIDE. Then quality of the learnt hash codes

of the training set is measured with cross-view retrieval per-

formance on it. Note that as SePH learns a unified hash code

for each training instance, on the training set the perfor-

mance of “Image Query v.s. Text Database” equals that of

“Text Query v.s. Image Database”, and thus we only show

the former one in Fig. 2(c). It can be seen that the quality

of learnt hash codes varies little using different initial val-

ues, with the corresponding standard error of ��� values

being around 0.002. Similar results are also observed on

other datasets and with other hash code lengths. And thus

the performance of SePH is not sensitive to initial values.

4.3. Effects of Model Parameters

In previous experiments, we empirically set the only

model parameter � in the objective function of SePH (i.e.

formula (7)) as 0.01. Here we conduct experiments to anal-

yse its effects on the quality of the learnt hash codes of a

training set. Specifically, with the hash code length fixed

as 16 bits, we vary � in {0, 10−4, 10−3, . . . , 1} for each

dataset to learn hash codes of the corresponding training

set, and then measure their quality with cross-view retrieval

performance on the training set. Note that here the initial

values for SePH are identical for each �, so as to remove

their effects. Fig. 3(a) illustrates the effects of � on all three

datasets. It can be seen that with � increasing, the qual-

ity of learnt hash codes for training sets of MIRFlickr and
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Figure 3. Effects of affecting factors on the proposed SePH. Sub-figure (a) illustrates the effects of the only model parameter � on the

quality of the learnt hash codes for the training sets of all datasets. Sub-figure (b) and (c) respectively show the effects of the sampling

size for learning kernel logistic regression (i.e. hash functions) and those of training set size on the performance of SePH in the largest

NUS-WIDE, with the hash code length fixed as 16 bits.

NUS-WIDE firstly increases and then decreases, while that

w.r.t. Wiki keeps unchanged with ��� = 1, i.e. the op-

timal ��� value. The experimental result is reasonable,

because an appropriate non-zero � can help to reduce the

quantization loss and make the learnt real-valued hash code

matrix (i.e. �̂) near to the optimal binary one (i.e.�), while

a large � can lead the optimization process to focus less on

minimizing the KL-divergence and thus learn poorer hash

codes that cannot well preserve semantic affinities. Addi-

tionally, though the empirical value 0.01 is not the optimal

setting for � on each dataset, it is still near to the optimal

ones and yields better performance than � = 0.

4.4. Further Analyses

To reduce the training and predicting costs of kernel lo-

gistic regression, in this paper we propose to perform sam-

pling for building smaller kernel feature matrices for span-

ning the to-be-learnt weighting vectors. In previous ex-

periments, the sampling size is set as 500 on all datasets.

Here we conduct experiments on the largest NUS-WIDE

to see its effects on the performance of SePH. Similarly,

the hash code length is fixed as 16 bits. Then with learnt

hash codes on the training set, we vary the sampling size

from 100 to 5, 000 and perform random sampling and k-

means to learn the corresponding hash functions. For each

sampling size, the corresponding cross-view retrieval per-

formance on the query set is measured and compared, as

illustrated in Fig. 3(b). It can be seen that with the sam-

pling size increasing, the performance of SePH increases

and then converges quickly. Specially, for NUS-WIDE, the

performance of SePH begins to converge at a sampling size

around 1,000. And even for the empirical setting in our ex-

periments, i.e. 500, it can achieve more than 98% of the

performance w.r.t. the largest sampling size (i.e. 5,000) at

around 10% of its costs, as theoretically analysed before.

Therefore, performing sampling for learning kernel logistic

regression is reasonable. Additionally, we can observe that

the superiority of k-means over random sampling is more

significant at small sampling sizes (e.g. 100). Because in

those cases, sampled kernel feature vectors are far from re-

dundant and k-means can probably select better ones.

Moreover, we analyse the effects of the training set size

on the performance of SePH. Similarly, with the hash code

length fixed as 16 bits, we vary the training set size from

100 to 5, 000, and measure the corresponding performance

of SePH on the largest NUS-WIDE, as shown in Fig. 3(c).

It can be seen that the performance of SePH keeps increas-

ing and finally tends to converge as the training set size in-

creases. For NUS-WIDE, the performance of SePH begins

to converge at a training set size around 3, 000, less than

2% of the retrieval set. It means that SePH can well exploit

the limited supervised information of a dataset and can be

suitable for large-scale databases, since only the supervised

information of a small fraction is needed for training.

Similar analysis results are observed on other datasets.

5. Conclusions

In this paper, we propose a supervised hashing method

termed SePH for cross-view retrieval. For training, SePH

firstly transforms the given semantic affinities of training

data into a probability distribution and approximates it with

to-be-learnt hash codes in Hamming space via minimizing

the KL-divergence. Then in each view, SePH utilizes kernel

logistic regression with a sampling strategy to learn the non-

linear projections from features to hash codes. As for out-

of-sample extension, the unified hash code of any unseen

instance is determined using a novel probabilistic approach,

with its predicted hash codes as well as the corresponding

output probabilities from different observed views. SePH is

validated on three benchmark datasets, and it yields state-

of-the-art performance.
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